

Trading Agent Final Report:

Tiger Blood

Melissa Cox, Augie Hill, Max Kolasinski

SI 652 / EECS 547

Introduction

Our approach to creating a successful TAC/AA agent primarily focused on simplicity of design

and an incremental development process. By acknowledging the fact that we would not have

enough time to successfully develop an intricate agent, we were able to discover a very simple

yet effective algorithm that accounted for many complex components of the TAC/AA scenario.

Starting with this simple algorithm, our incremental development process and custom heads-up

display allowed us to empirically gauge the effectiveness of additional features.

Sources Consulted

We consulted the existing TAC/AA literature and focused on learning what made past winners

such as TacTex, Schlemazl and QuakTAC [1] so successful. We additionally consulted the

publication describing the lessons learned from the first TAC/AA tournament [2], from which we

learned that the most important aspect to creating a successful agent is to manage distribution

capacity well. We referred to the competition specifications [3] frequently so we understood the

different parameters and how to exploit them. Additionally, we utilized custom graphical charts,

which were automatically archived, beyond those made available on the server, so we could

watch various metrics of our agent rise and fall as the game progressed and then later go back

to the graphs and compare them with the current iteration. This turned out to be key in quickly

analyzing what worked and what needed to be changed.

Process

We first reviewed the specifications of the competition as well as the literature describing past

successful agents. We were drawn to the TacTex, Schlemazl and QuakTAC agents and tried to

emulate their behavior in our own agent. After sketching out the factors we could use from the

specification, we broke down the information we knew from the game initialization, what would

be revealed to us about our own agent throughout the game and what we could learn about our

competitors. We identified the following list of factors to consider:

● user model/ NSInit: predicting how many users at each state (NS, IS, F0, F1, F2,

T)

● advertiser model: predicting number of impressions, query type and estimated

bids of the competing agents

● ad type: keep track of all ads and assume the most frequent is the predicted type

(generic or targeted)

● capacity: awareness of capacity, noting which level (low, medium or high) and

predicting when our agent is near capacity.

● bidding: when capacity is high, bid aggressively; as capacity becomes lower, bid

more conservatively

● specialties: bid aggressively on our own agent’s F2 specialty

● spending limits: assume spending limits are same as previous day

We had a plan. However, when it was time to start developing the agent, we hit a wall. It

seemed like we had bitten off more than we could handle. A change of direction was needed.

Instead of starting with a complex agent that would take a long time to code and would be

difficult to debug, we turned that process upside down and started with the simplest bidding

algorithm we could think of that might work: a hill-climbing algorithm.

Despite its simplicity, this agent performed well. At this time, we felt this was an appropriate

base on which to begin integrating more sophisticated domain knowledge. It was also at this

time that we began analyzing our agent with the help of graphical charts generated using the

game data.

We understood from the readings that controlling capacity would be crucial to building a

successful agent. There were many factors to consider, especially regarding the other

advertisers, so for simplicity we decided to first start by optimizing capacity using a few simple

heuristics. Iterations V1 and V2 focused on controlling capacity, and iteration V3 was a small

change to the bidding algorithm.

After we did surprisingly well in the practice tournament using V3, we were feeling good about

our simple agent, so decided to only make measured improvements to that algorithm for the

final tournament. It was a good thing we tested new features against the last proven agent,

because if we hadn’t, we might have used V5 in the final tournament, which we found in testing

would have been a disaster, and instead used V4.

Iterative Development

In order to gauge the effectiveness of our incremental changes, we ran our agents through

practice games set up on a remote virtual Linux server. We iterated through 5 major versions of

our agent before the final tournament.

Naive

The naive agent was a very simple profit hill-climbing agent that was intended to give us a

baseline against which we could test our ideas. The pseudocode for each query of this agent is

as follows:

INIT:

// set a starting price

if (queryType is F0) {

bidPrice = USP * 0.04

} else if (queryType is F1) {

bidPrice = USP * 0.06

} else if (queryType is F2) {

bidPrice = USP * 0.1

}

// set an increment

bidDelta = 0.05 * bidPrice

UPDATE:

// update direction

if ((negative profit and positive bidDelta)

or (profit from 2 days ago > profit from yesterday)) {

bidDelta *= -1;

}

// update bid price

bidPrice += bidDelta

The INIT section sets the starting bidPrice and bidDelta for the query. The UPDATE section

changes bidDelta according to the profit history and then updates the bidPrice. We tuned the

INIT coefficients by playing against the Dummies, and eventually started winning most of those

games.

V1

For iteration V1, after adding targeting for our F2 specialization, we focused primarily on

controlling our capacity. We did this first by setting spending limits to 1 for a portion of the

queries with the highest cost per conversion. The number of queries to cut off was linearly

increasing proportional to the amount of capacity in excess of 50%. For example, if our capacity

was at 40%, no queries would be cut. If our capacity was at 51%, 1 query would be cut. If our

capacity was at 100% or above, all of the queries would be cut.

This ended up being slightly better on average than the Naive agent, but produced obvious

problems when we looked at the capacity graphs (see Appendix A).

V2

For this iteration, we attempted to improve upon V1's capacity management. It was plain to see

from the capacity graphs that the approach we took in V1 resulted in wild swings of capacity. We

wanted instead to reach our capacity and stay at around that capacity. We realized by looking at

our graphs and the relative conversion baselines for each focus group that the F0 and F1

queries were of little benefit once we reached our capacity, and that we would instead want to

focus our effort on gathering conversions from just the F2 queries. So instead of cutting off the

F2 queries, we would set a spending limit for each, excluding the manufacturer and component

specialization query, that is (Avg Cost / % Used Capacity). This is a simple scaling of the

expected total cost for the query on the next day by how far over capacity we are, and it worked

well (see Appendix A).

V3

With our capacity problems solved, the pressing task was next to fix the behavior of the bidding

algorithm. As shown in Appendix B, the algorithm would continue descending to 0 regardless of

the minimum price to get an ad placed. This wasted time that could be spent in search of the

right bid. The UPDATE method from earlier was changed to the following, with the new parts in

red.

UPDATE:

// update the min

 if (did not get an ad slot) {

 min = bidPrice;

 }

// update direction

if ((negative profit and positive bidDelta)

 or (bidPrice <= min and negative bidDelta)

or (profit from 2 days ago > profit from yesterday)) {

bidDelta *= -1;

}

// update bid price

bidPrice += bidDelta

This was the agent we used in the practice tournament. It was simple, but effective.

V4

For this iteration, we made a few simple changes that were obvious after the practice

tournament. The first was to target on all F2 queries because there is no risk of targeting

incorrectly. The second was to only bid on the F0 query when capacity is HIGH. This was

because we noticed we were wasting a lot of our limited capacity space on the low profit-per-

conversion F0 query. When capacity is high, however, we found that gaining that small profit-

per-conversion from F0 was worthwhile at the beginning of the game. The F0 query would

always get cut off by the spending limit algorithm once we got nearer to capacity. The final

change to this agent was to modify the start bid coefficients slightly. This was the agent we

ended up using for the tournament.

Reflections on the Tournament

Using the V4 version of the TigerBlood agent, we placed first in the competition. We performed
very well at medium capacity, which is fortunate since probability distribution dictates medium
capacity is the most frequent. Our average was approximately $50,000 per game over 20
games. We were cable to capitalize on Game 2 with a high capacity and strong result of over
$72,000. This may have been attributed to the fact that not all agents were playing, as we were
never able to replicate this high score. We clearly under-performed at low capacity, but overall
did very well for the tournament. BidBuddy was our closest competitor in terms of game
average; when comparing overall game averages the difference was only ~$95. (Not counting
zero games or partial games, just full games).

Conclusion

In conclusion, TigerBlood owes it’s winning strategy to the iterative design process that quickly
identified how important controlling capacity was. By repeatedly testing out new theories and
reviewing the automatically generated graphs, we could fine-tune the hill-climbing algorithm and
correct some of our mistakes (such as setting spending limits on F2 queries).

Why does the simple profit-seeking hill-climbing algorithm work so well in such a complex
environment? We believe it is because the profit metric encapsulates much of that environment

into a single metric much the way the price of a good efficiently encapsulates the means of
production and its relative value to society. By optimizing on that one metric, we are therefore
implicitly optimizing on all everything that produced that metric.

Additionally, we were able to win the Final Tournament due to the fact that we dominated in
early games when not all agents were playing. When comparing full games played, we beat
BidBuddy by less than a hundred dollars, so we recognize that improving our performance
during low capacity games would be crucial to competing in future tournaments.

References

[1] Pardoe, D; Chakraborty, D; Stone, P. TacTex09: Champion of the First Trading

 Agent Competition on Ad Auctions. Technical report, University of Texas at Austin, 2009.

[2] Jordan, P R; Wellman, M.P.; Balakrishnan, G. Strategy and Mechanism Lessons from

 the First Ad Auctions Trading Agent Competition. Technical report, 2010.

[3] Jordan, P.R; Kaul, A; Wellman, M.P. The ad auctions game for the 2010 trading agent

 competition. Technical report, University of Michigan, 2010.

Appendix A: Visualizing Capacity
This chart shows our V1 agent (capacity 450) and our first attempt at controlling capacity. When the agent

would climb to near capacity, it set the bid limits of everything to 1. These dramatic spikes made it easy to

see we needed to aim for a smoother capacity control.

By tak ing a measured approach to setting spend limits on F2 queries, we could now more efficiently

hover near or at capacity (here at 600). Although it went over capacity at times, the spikes are not nearly

as dramatic as we saw in V1 (above).

Appendix B: Bidding Algorithm Without a Floor
TigerBlood agents N to V2 had this odd behavior in some queries where bids would go all the way down

to 0. V3 fixes this problem.

Appendix C: Cost Recovery on Under-performing Queries
This graph illustrates our agent cutting off under-performing queries as the game progresses. In round 5,

the [null,null] query gets dropped so we don’t waste money on it. After this behavior was observed in the

practice tournament, we decided to drop [null, null] entirely instead of wasting any money in the first few

rounds- we know it gets dropped early and does not seem to help.

Appendix D: Visualizing Impressions and Estimating Specialties
This graph illustrates the number of impressions by query type. In this game, it is easy to see that our

specialty is [audio, flat] which dominates for the first half of the game, then really takes off at round 39.

Appendix E: Tournament Results

Game Rank Cap Result What we observed

356 1st 450 53 236.37
● won at medium capacity

● not all agents playing

357 1st 600 72 736.87
● personal best so far (highest result of our test

results)

358 5th 300 33 283.28

● not doing well for low capacity

● winners at high capacity not performing as well as

we did when we had high capacity

359 3rd 450 56 216.53

● did very well for medium capacity

● very close to second place (assuming 1st & 2nd

slots had high capacity)

360 2nd 450 50 543.02

● second place for medium capacity

● unsure if non-playing agents are assigned high

capacity

361 1st 600 49 380.60
● 1st place at high capacity but should have done

better than 49K!

362 5th 300 38 613.45
● good ROI, just not placing well due to lowest

capacity

363 3rd 450 47 476.71 ● overall, leading the tournament by ~21K

364 3rd 450 47 903.95

● EasyCommerce catching up!

● assuming top 2 are high capacity

● BidBuddy beat our high score (at 74K)

365 2nd 600 53 876.78
● close to dis_inc (winner)

● didn’t do as well as we’d like with high capacity

366 8th 300 25 091.81

● first instance of last place!

● msmbot- assuming this is their first game at high

capacity where they were playing

● still winning overall, but margin is shrinking

367 3rd 450 45 328.38 ● EasyCommerce 7th (low capacity) that will help

368 1st 450 54 064.03 ● first place (by ~10K) for medium capacity

369 4th 300 44 011.21 ● personal best for low capacity (42- impressive!)

370 1st 600 60 559.60
● realizing both our agent and EasyCommerce do

really well with high capacity

371 2nd 450 53 171.05 ● found our niche

372 1st 600 62 626.36 ● leading by 11K+

373 2nd 450 47 026.67 ● doing fine

374 1st 450 56 555.69 ● first place, beating high capacity

● beat BidBuddy by $27!

375 7th 300 33 117.49 ● not our worst game

Appendix F: Final Tournament Results
This graph depicts the final tournament results, where we averaged 49,249 per game. Game 366 is our

worst, where we scored just $25K with low capacity. Compared to other teams, we did not recover from

low capacity games as well as other agents, but did very well for medium capacity.

	Trading Agent Final Report:
	Tiger Blood
	Melissa Cox, Augie Hill, Max Kolasinski
	SI 652 / EECS 547
	Introduction
	Sources Consulted
	Process
	Iterative Development
	Reflections on the Tournament
	Conclusion
	References

