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Introduction 

Our approach to creating a successful TAC/AA agent primarily focused on simplicity of design 

and an incremental development process. By acknowledging the fact that we would not have 

enough time to successfully develop an intricate agent, we were able to discover a very simple 

yet effective algorithm that accounted for many complex components of the TAC/AA scenario. 

Starting with this simple algorithm, our incremental development process and custom heads-up 

display allowed us to empirically gauge the effectiveness of additional features. 

Sources Consulted 

We consulted the existing TAC/AA literature and focused on learning what made past winners 

such as TacTex, Schlemazl and QuakTAC [1] so successful. We additionally consulted the 

publication describing the lessons learned from the first TAC/AA tournament [2], from which we 

learned that the most important aspect to creating a successful agent is to manage distribution 

capacity well. We referred to the competition specifications [3] frequently so we understood the 

different parameters and how to exploit them. Additionally, we utilized custom graphical charts, 

which were automatically archived, beyond those made available on the server, so we could 

watch various metrics of our agent rise and fall as the game progressed and then later go back 

to the graphs and compare them with the current iteration. This turned out to be key in quickly 

analyzing what worked and what needed to be changed. 

Process 

We first reviewed the specifications of the competition as well as the literature describing past 

successful agents. We were drawn to the TacTex, Schlemazl and QuakTAC agents and tried to 

emulate their behavior in our own agent. After sketching out the factors we could use from the 

specification, we broke down the information we knew from the game initialization, what would 

be revealed to us about our own agent throughout the game and what we could learn about our 

competitors. We identified the following list of factors to consider: 

● user model/ NSInit: predicting how many users at each state (NS, IS, F0, F1, F2, 

T) 

● advertiser model: predicting number of impressions, query type and estimated 

bids of the competing agents 

● ad type: keep track of all ads and assume the most frequent is the predicted type 

(generic or targeted) 

● capacity: awareness of capacity, noting which level (low, medium or high) and 

predicting when our agent is near capacity. 

● bidding: when capacity is high, bid aggressively; as capacity becomes lower, bid 

more conservatively 

● specialties: bid aggressively on our own agent’s F2 specialty 

● spending limits: assume spending limits are same as previous day 

 

 

We had a plan. However, when it was time to start developing the agent, we hit a wall. It 

seemed like we had bitten off more than we could handle. A change of direction was needed. 



 

 

Instead of starting with a complex agent that would take a long time to code and would be 

difficult to debug, we turned that process upside down and started with the simplest bidding 

algorithm we could think of that might work: a hill-climbing algorithm.  

 

Despite its simplicity, this agent performed well. At this time, we felt this was an appropriate 

base on which to begin integrating more sophisticated domain knowledge. It was also at this 

time that we began analyzing our agent with the help of graphical charts generated using the 

game data. 

 

We understood from the readings that controlling capacity would be crucial to building a 

successful agent. There were many factors to consider, especially regarding the other 

advertisers, so for simplicity we decided to first start by optimizing capacity using a few simple 

heuristics. Iterations V1 and V2 focused on controlling capacity, and iteration V3 was a small 

change to the bidding algorithm. 

 

After we did surprisingly well in the practice tournament using V3, we were feeling good about 

our simple agent, so decided to only make measured improvements to that algorithm for the 

final tournament. It was a good thing we tested new features against the last proven agent, 

because if we hadn’t, we might have used V5 in the final tournament, which we found in testing 

would have been a disaster, and instead used V4. 

Iterative Development 

In order to gauge the effectiveness of our incremental changes, we ran our agents through 

practice games set up on a remote virtual Linux server. We iterated through 5 major versions of 

our agent before the final tournament. 

 

Naive 

The naive agent was a very simple profit hill-climbing agent that was intended to give us a  

baseline against which we could test our ideas. The pseudocode for each query of this agent is 

as follows: 

 

INIT: 

// set a starting price 

if (queryType is F0) { 

bidPrice = USP * 0.04 

} else if (queryType is F1) { 

bidPrice = USP * 0.06 

} else if (queryType is F2) { 

bidPrice = USP * 0.1 

} 

// set an increment 

bidDelta = 0.05 * bidPrice 

 



 

UPDATE: 

// update direction 

if ((negative profit and positive bidDelta)  

or (profit from 2 days ago > profit from yesterday)) { 

bidDelta *= -1; 

} 

// update bid price 

bidPrice += bidDelta 

 

The INIT section sets the starting bidPrice and bidDelta for the query. The UPDATE section 

changes bidDelta according to the profit history and then updates the bidPrice. We tuned the 

INIT coefficients by playing against the Dummies, and eventually started winning most of those 

games. 

 

V1 

For iteration V1, after adding targeting for our F2 specialization, we focused primarily on 

controlling our capacity. We did this first by setting spending limits to 1 for a portion of the 

queries with the highest cost per conversion. The number of queries to cut off was linearly 

increasing proportional to the amount of capacity in excess of 50%. For example, if our capacity 

was at 40%, no queries would be cut. If our capacity was at 51%, 1 query would be cut. If our 

capacity was at 100% or above, all of the queries would be cut. 

This ended up being slightly better on average than the Naive agent, but produced obvious 

problems when we looked at the capacity graphs (see Appendix A). 

 

V2 

For this iteration, we attempted to improve upon V1's capacity management. It was plain to see 

from the capacity graphs that the approach we took in V1 resulted in wild swings of capacity. We 

wanted instead to reach our capacity and stay at around that capacity. We realized by looking at 

our graphs and the relative conversion baselines for each focus group that the F0 and F1 

queries were of little benefit once we reached our capacity, and that we would instead want to 

focus our effort on gathering conversions from just the F2 queries. So instead of cutting off the 

F2 queries, we would set a spending limit for each, excluding the manufacturer and component 

specialization query, that is (Avg Cost / % Used Capacity). This is a simple scaling of the 

expected total cost for the query on the next day by how far over capacity we are, and it worked 

well (see Appendix A). 

 

V3 

With our capacity problems solved, the pressing task was next to fix the behavior of the bidding 

algorithm. As shown in Appendix B, the algorithm would continue descending to 0 regardless of 

the minimum price to get an ad placed. This wasted time that could be spent in search of the 

right bid. The UPDATE method from earlier was changed to the following, with the new parts in 

red. 

 

UPDATE: 



 

// update the min 

 if (did not get an ad slot) { 

  min = bidPrice; 

 } 

// update direction 

if ((negative profit and positive bidDelta) 

 or (bidPrice <= min and negative bidDelta) 

or (profit from 2 days ago > profit from yesterday)) { 

bidDelta *= -1; 

} 

// update bid price 

bidPrice += bidDelta 

 

This was the agent we used in the practice tournament. It was simple, but effective. 

 

V4 

For this iteration, we made a few simple changes that were obvious after the practice 

tournament. The first was to target on all F2 queries because there is no risk of targeting 

incorrectly. The second was to only bid on the F0 query when capacity is HIGH. This was 

because we noticed we were wasting a lot of our limited capacity space on the low profit-per-

conversion F0 query. When capacity is high, however, we found that gaining that small profit-

per-conversion from F0 was worthwhile at the beginning of the game. The F0 query would 

always get cut off by the spending limit algorithm once we got nearer to capacity. The final 

change to this agent was to modify the start bid coefficients slightly. This was the agent we 

ended up using for the tournament. 

Reflections on the Tournament 

Using the V4 version of the TigerBlood agent, we placed first in the competition. We performed 
very well at medium capacity, which is fortunate since probability distribution dictates medium 
capacity is the most frequent. Our average was approximately $50,000 per game over 20 
games. We were cable to capitalize on Game 2 with a high capacity and strong result of over 
$72,000. This may have been attributed to the fact that not all agents were playing, as we were 
never able to replicate this high score. We clearly under-performed at low capacity, but overall 
did very well for the tournament. BidBuddy was our closest competitor in terms of game 
average; when comparing overall game averages the difference was only ~$95. (Not counting 
zero games or partial games, just full games). 
 

Conclusion 

In conclusion, TigerBlood owes it’s winning strategy to the iterative design process that quickly 
identified how important controlling capacity was. By repeatedly testing out new theories and 
reviewing the automatically generated graphs, we could fine-tune the hill-climbing algorithm and 
correct some of our mistakes (such as setting spending limits on F2 queries).  
 
Why does the simple profit-seeking hill-climbing algorithm work so well in such a complex 
environment? We believe it is because the profit metric encapsulates much of that environment 



 

into a single metric much the way the price of a good efficiently encapsulates the means of 
production and its relative value to society. By optimizing on that one metric, we are therefore 
implicitly optimizing on all everything that produced that metric. 
 
Additionally, we were able to win the Final Tournament due to the fact that we dominated in 
early games when not all agents were playing. When comparing full games played, we beat 
BidBuddy by less than a hundred dollars, so we recognize that improving our performance 
during low capacity games would be crucial to competing in future tournaments.  
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Appendix A: Visualizing Capacity 
This chart shows our V1 agent (capacity 450) and our first attempt at controlling capacity. When the agent 

would climb to near capacity, it set the bid limits of everything to 1. These dramatic spikes made it easy to 

see we needed to aim for a smoother capacity control. 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

   
 

 
 
By tak ing a measured approach to setting spend limits on F2 queries, we could now more efficiently 

hover near or at capacity (here at 600). Although it went over capacity at times, the spikes are not nearly 

as dramatic as we saw in V1 (above). 



 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 

Appendix B: Bidding Algorithm Without a Floor  
TigerBlood agents N to V2 had this odd behavior in some queries where bids would go all the way down 

to 0. V3 fixes this problem. 



 

 
 
 

 
 
 

 
 
 

 
 
 

Appendix C: Cost Recovery on Under-performing Queries 
This graph illustrates our agent cutting off under-performing queries as the game progresses. In round 5, 

the [null,null] query gets dropped so we don’t waste money on it. After this behavior was observed in the 

practice tournament, we decided to drop [null, null] entirely instead of wasting any money in the first few 

rounds- we know it gets dropped early and does not seem to help. 

 



 

 
 



 

Appendix D: Visualizing Impressions and Estimating Specialties 
This graph illustrates the number of impressions by query type. In this game, it is easy to see that our 

specialty is [audio, flat] which dominates for the first half of the game, then really takes off at round 39. 

 
 

 
 



 

Appendix E: Tournament Results 

Game Rank Cap Result What we observed 

356 1st 450 53 236.37 
● won at medium capacity 

● not all agents playing 

357 1st 600 72 736.87 
● personal best so far (highest result of our test 

results) 

358 5th 300 33 283.28 

● not doing well for low capacity 

● winners at high capacity not performing as well as 

we did when we had high capacity 

359 3rd 450 56 216.53 

● did very well for medium capacity 

● very close to second place (assuming 1st & 2nd 

slots had high capacity) 

360 2nd 450 50 543.02 

● second place for medium capacity 

● unsure if non-playing agents are assigned high 

capacity 

361 1st 600 49 380.60 
● 1st place at high capacity but should have done 

better than 49K! 

362 5th 300 38 613.45 
● good ROI, just not placing well due to lowest 

capacity 

363 3rd 450 47 476.71 ● overall, leading the tournament by ~21K 

364 3rd 450 47 903.95 

● EasyCommerce catching up! 

● assuming top 2 are high capacity 

● BidBuddy beat our high score (at 74K) 

365 2nd 600 53 876.78 
● close to dis_inc (winner) 

● didn’t do as well as we’d like with high capacity 

366 8th 300 25 091.81 

● first instance of last place! 

● msmbot- assuming this is their first game at high 

capacity where they were playing 

● still winning overall, but margin is shrinking 

367 3rd 450 45 328.38 ● EasyCommerce 7th (low capacity) that will help 

368 1st 450 54 064.03 ● first place (by ~10K) for medium capacity 

369 4th 300 44 011.21 ● personal best for low capacity (42- impressive!) 

370 1st 600 60 559.60 
● realizing both our agent and EasyCommerce do 

really well with high capacity 

371 2nd 450 53 171.05 ● found our niche 

372 1st 600 62 626.36 ● leading by 11K+ 

373 2nd 450 47 026.67 ● doing fine 

374 1st 450 56 555.69 ● first place, beating high capacity 



 

● beat BidBuddy by $27! 

375 7th 300 33 117.49 ● not our worst game 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix F: Final Tournament Results 
This graph depicts the final tournament results, where we averaged 49,249 per game. Game 366 is our 

worst, where we scored just $25K with low capacity. Compared to other teams, we did not recover from 

low capacity games as well as other agents, but did very well for medium capacity.  
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